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The basic rules of quantum mechanics are reformulated. They deal primarily 
with individual systems and do not assume that every ket may represent a 
physical state. The customary kinematic and dynamic rules then allow to con- 
struct consistent Boolean logics describing the history of a system, following 
essentially Griffiths' proposal. Logical implication is defined within these logics, 
the multiplicity of which reflects the complementary principle. Only one inter- 
pretative rule of quantum mechanics is necessary in such a framework. It states 
that these logics provide bona fide foundations for the description of a quantum 
system and for reasoning about it. One attempts to build up classical physics, 
including classical logic, on these quantum foundations. The resulting theory of 
measurement needs not to state a priori that the eigenvalues of an observable 
have to be the results of individual measurements nor to assume wave packet 
reduction. Both these properties can be obtained as consequences of the basic 
rules. One also needs not to postulate that every observable is measurable, even 
in principle. A proposition calculus is obtained, allowing in principle the 
replacement of the discussion of problems concerned with the practical inter- 
pretation of experiments by due calculations. 

KEY WORDS:  Quantum mechanics; foundations; logic; classical limit; wave 
packet reduction. 

1. I N T R O D U C T I O N  

Q u a n t u m  m e c h a n i c s  is a ve ry  d e e p  and  diff icult  theory .  D e s p i t e  its t r e m e n -  

d o u s  p rac t i ca l  success,  its c o n c e p t u a l  f r a m e w o r k  raises  g rea t  difficulties. 

S o m e  c rea t ive  m i n d s  d i s c o v e r e d  it a n d  m o l d e d  it, bu t  s o m e  exac t i ng  minds ,  

of ten  the  s a m e  ones ,  c o u l d  n o t  en t i re ly  a c c e p t  it. 

A n y b o d y  w h o  tries to  i m p r o v e  o r  j u s t  to  m o d i f y  a m i n o r  p o i n t  in its 

f o u n d a t i o n s  s o o n  feels e v e n  be t t e r  h o w  t igh t  the  t h e o r y  is and  h o w  deep ly  
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it was thought out. The present work began with such a minor 
modification. This led to new questions and, surprisingly, to apparently 
new results and even a new approach, sometimes rather different from the 
accepted point of view. Things could not begin to clarify until a systematic 
restatement of the basic rules was attempted. The result is the present 
paper, in which I do not claim to propose a full-fledged theory, but to offer 
an apparently consistent approach to criticism. 

In Section 2, the kinematic, dynamical, and descriptive rules used to 
define the Hilbert space, observables, the Schr6dinger equation, and 
physical states are given. Nothing is supposed about classical physics and 
therefore also nothing about measurement. However, I take seriously the 
standpoint that classical physics (meaning both classical logic and classical 
dynamics) should ultimately rest upon quantum foundations. This is why 
! start from individual systems and not from statistical ensembles and why 
I do not assume that every ket can represent a physical state. 

! start from this general framework, which looks still more abstract 
than usual from a lack of interpretative rules, and begin a logical construc- 
tion aiming at a more intuitive understanding of a system by descriptive 
propositions. The first step, as given in Section 3, is von Neumann's 
construction for propositions concerning one observable at a given time, 
together with their associated mathematical measures. (1~ I refrain from call- 
ing such a measure a probability because experimental trials are not yet 
available nor even meaningful. 

In Section 4, I follow Griffiths' construction to define propositions 
describing a system at several different times. (2'3~ Griffiths' measure for such 
propositions is recalled in Section 5, with minor modifications. I also recall 
after him that not all propositions make mathematical sense and I exhibit 
the consistency relations that select the meaningful families of propositions. 
These families of propositions are called here consistent quantum represen- 
tations of (Boolean) logic for reasons to be explained in the text. 

In Section 6, I build up some logics and not only descriptive 
statements by defining a rule of implication among propositions (i.e., the 
ability to say "if..., then...") by using conditional measures (not yet 
probabilities). A theorem tells us that we can never meet contradiction 
although many different representations of logic are at our disposal. This 
multiplicity of logics may be said to exhibit the many aspects of the 
complementary principle. 

In Section 7, I give a quantum logical meaning to a classical 
proposition stating that a system is in some large cell of a classical phase 
space at time t. This result is not entirely new. I also state sufficient con- 
ditions over the state and the Hamiltonian such that classical dynamics 
holds and find that, in such a case, classical logic also holds as a limit of 
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quantum logics when Planck's constant may be considered as relatively 
small. In that section, only some results are given without the proofs. This 
is because of the somewhat technical character of these proofs, using 
mathematical microanalysis, which would have made continuous reading 
uneasy. They are given in a following paper, hereafter denoted by III. 
Extending these results to macroscopic physical systems raises a host of 
unsolved problems. 

Up to that points no rule has been added to the basic quantum rules 
of Section 2. I then introduce in Section 8 a very general interpretative rule 
stating that the consistent quantum representations of logic provide the 
correct physical way for describing a system and for reasoning about it. I 
also attempt to show (not being able to prove it entirely) that classical facts 
may be described by quantum mechanics. Here a fact is defined essentially 
as some event that leaves a neat physical trace (or a so-called memory), at 
least for some finite length of time. Admitting these results opens the way 
to measurement theory. 

In Section 9, measurement theory is formulated in the resulting 
framework. Individual measurements are considered. It is found that only 
the eigenvalues of an observable can be found in such a measurement and 
wave packet reduction is also obtained as a consequence. I do not claim 
that these results could not be obtained otherwise. However, being able 
now in principle to give a meaning to an individual experimental trial 
(although I only used the rules of quantum mechanics), it becomes possible 
to state consistently the last rule interpreting the mathematical measures as 
probabilities. It should be also mentioned that one does not need to 
assume that every observable can be measured in principle, either actually 
or conceptually, although they may enter in propositions. 

The case of identical particles is sketched in Section 10. 
There is practically no experimental difference between the present 

formulation of quantum mechanics and the standard ones. Its interest may 
be, however, twofold: first, to remove or at least to significantly modify 
some epistemological consequences of standard quantum mechanics that 
look questionable; second, to provide a proposition calculus that can, in 
principle, replace any talkative interpretation of an experiment by 
straightforward calculations. 

Some examples of applications are given in the next paper, hereafter 
called II. Many remain to be done. In the third paper, I give the proofs of 
the theorems concerning the relation between quantum propositions and 
classical propositions. They suggest a possible application of the present 
form of the theory to the problem of irreversibility, a program that is only 
sketchily described. 

Brief accounts of some of these ideas have already been published. ~4'5) 
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2. K I N E M A T I C  A N D  D Y N A M I C A L  RULES 

In the present section, I shall give the general rules stating the basic 
axioms of quantum mechanics as I shall use them, but shall not include the 
rules allowing an experimental interpretation that will be only obtained 
later on. I take the notion of an isolated physical system for granted. (6-8) 

2.1. Kinematics 

Rule 1. An individual isolated physical system S is described 
theoretically by a well-defined Hilbert space ~ together with the self- 
adjoint operators acting in ~g. 

Comments. The elements of Jt ~ will be called vectors and a normed 
vector will be called a ket. A self-adjoint operator A has a spectrum that is 
denoted by aA. It is known that a~ generally consists of a discrete part, a 
continuous measurable part, and a singular part. (1'9) I shall reserve the 
name observable to a self-adjoint operator having no singular spectrum. I 
shall use Dirac's convention for the spectrum/6): the eigenvectors of A with 
eigenvalue a will be denoted by la, r>, where r is a degeneracy index, even 
when a lies in the continuous spectrum (the necessary rigorous corrections 
being well known("9)). Given a subset C of aA, I shall denote by 

fcda (2.1) 

a summation over these values, even when the set C is discrete. 
I shall treat several commuting observables (as, for instance, the three 

coordinate operators of a particle position) as only one, considering the 
spectrum a as having in that case more than one dimension. 

2.2. States 

Rule  2. The state of an individual isolated physical system S is 
specified by a finite-rank positive operator p with unit trace that will be 
called the state operator. 

Comments. Such an operator is, by definition, a self-adjoint 
operator having a finite number of nonzero positive eigenvalues. The 
reason for such a rule will become clear when the whole theory has been 
elaborated, once the preparation of a state will become explicit from 
measurement theory. 

In most cases, it will be convenient to assume that p is given in terms 
of a finite-rank projector E by p = E/(Tr E). A special case where the state 
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of S is defined by a ket 10) corresponds to p = 10){0t .  The operator p 
will not be treated as a density operator having only a statistical meaning. 
Its explicit specification involves the whole past history of S, particularly 
when the system was not yet isolated. When dealing with a nonseparated 
system, such as the two particles in an Einstein-Podolsky-Rosen 
situation, (1~ I shall include both particles in the isolated system. 

! explicitly do not assume that every projector can represent a physical 
state. In particular, I do not assume that every ket can represent a state. If, 
for instance, [bl) could represent the state of a bottle and Ib2) either 
broken glass or the atoms of the bottle brought into a plasma state, I do 
not assume that a ket such as c~ 1bI)+c2 ]b2) can represent a physical 
state. 

2.3. Dynamics 

Rule 3. There exists an observable H, the Hamiltonian, and an 
evolution operator U(t)= e x p ( - i H t )  such that any state operator evolves 
with time according to p(t)= U(t)poU l(t), where Po =p(0),  0 being a 
conveniently chosen origin of time. 

N.B. The rationalized Planck constant h has been taken equal to 
unity. 

2.4. Ensembles 

One may pass from individual systems to statistical ensembles by 
defining noninteracting systems. A statistical ensemble is made up of N 
noninteracting identical copies of a given individual system. 

Rule  4. Let S and S' be two isolated individual physical systems. 
The system X consisting of both S and S' not interacting has for its Hilbert 
space the tensor product ~ s |  ~ s , .  Its hamiltonian is H |  + I |  H'. 
The state operator of _r is the tensor product of the state operators p | p'. 

Here I denotes an identity operator. 

3. E L E M E N T A R Y  D E S C R I P T I O N  OF A P H Y S I C A L  S Y S T E M  

The previous rules are very abstract and they need interpretation, i.e., 
some way to bring them nearer to intuition and to make them experimen- 
tally meaningful. The first step will be to let some intuition clarify this 
purely mathematical framework. 
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3.1. E lementary  Predicates 

One generally describes a physical situation by some statements such 
as, "The position of an electron is in a volume V of space." Here the word 
"electron" may refer to a system S made up of only one electron, the word 
"position" denotes an observable, and "volume V" is a given subset of its 
spectrum. So, everything is already meaningful except the little word "is." It 
will be given a place in the theory by associating an observable with the 
whole sentence. 

D e f i n i t i o n  1. Given a system S, an observable A, and a subset C 
of cr A , the statement "the observable A is in C" will be called an elementary 
predicate and it will be denoted by [SI A, C]. When no confusion can arise, 
it will also be denoted by [A, C] or more simply by [C]. 

To such a predicate, we associate a projector F[C] (or more simply 
F), which will be called its predicate projector, and is defined by 

F ( [C] )  = .It da ~ La, r)(a, r] (3.1) 
r 

I shall denote by C* the complementary set of C in aA. The predicate 
IS, A, C*] will be called the negation of the predicate IS, A, C]. The 
associated projectors F and F* satisfy 

FF* = F ' F =  0, F+F* = 1 (3.2) 

3.2. The Measure  of a Predicate 

It will be convenient to introduce here the measure of a set as a 
mathematical notion. I t  will be stated without the necessary restriction to 
Lebesgue-measurable sets, the knowledgeable reader being able to provide 
the technical notions that play no essential role in the present context. 

D e f i n i t i o n  2. A measure # on a set a associates a number #(C) to 
any subset C of a, satisfying the three following properties(9): 

(i) ~(C)~>0 (3.3) 

(ii) /40-) = 1 (3.4) 

(iii) #(CwC')=#(C)+I~(C') if C c ~ C ' = ~  (3.5) 

A measure has all the mathematical properties of a probability. 
However, it cannot be considered to be a probability in the physical sense 
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as long as one cannot specify what kind of physical experiments (trials) on 
a statistical ensemble will allow its comparison with the frequency of a 
result in a series of trials. 

D e f i n i t i o n  3, Given a physical system S with state operator p and 
an elementary predicate IS, A, C], I define the measure of the predicate in 
state p by 

w o( C ) = Tr (pF( [C] ) )  (3.6) 

Often I shall omit the index p in wp(C). The fact that Eq. (3.6) defines a 
measure is obvious. When p = [O)(tpl,  one has simply 

w ( C ) = f c d a ( ~ l ( ~ ' a , r ) ' 2  ) 

I shall now refer the predicates to a given time t. To do so, it will be useful 
to introduce the Heisenberg time-dependent observables that are associated 
with a given observable A by 

A(t) = U ~(t) AU(t) (3.7) 

where A may be in particular a projector. 

Defini t ion 4. Let S be a physical system in a state Po at time zero. 
The proposition stating that an observable A has its values in a subset C of 
aA at time t (t > 0) will be called an elementary predicate at time t or, more 
concisely, a predicate and it will be denoted by [S, A, C, t]. It is associated 
with the projector F(t, C), where F(t, C)=U-~(t)F(C)U(t) .  To the 
predicate IS, A, C, t], the system S being in the initial state Po, I assign the 
measure 

wp,,(C) = Tr(p(t)  F) = Tr(poF(t)) (3.8) 

where F =  F(C). 

4. H I S T O R Y  P R E D I C A T E S  

It is not enough to be able to describe a physical system at one given 
time t. When we think in particular of a classical object, for instance, we 
want to consider its whole history when time varies. The first step toward 
such a goal will be to describe a quantum system at two different times tl 
and t2. 
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4.1. History Predicates 

A typical example the reader may keep in mind in the next con- 
siderations is the following one. Consider an electron. Let V be a volume in 
configuration space (i.e., a subset in the spectrum of the position operator) 
and B a similar set in momentum space. I try to assign a meaning to the 
sentence: "The position of the electron is in V at time t~ and its momentum 
is in B at time t2." This development is due to Griffiths. ~2) 

Defini t ion 5. Let S be a physical system. Let A1 (resp. A2) be an 
observable and let C~ be a subset of its spectrum ~ (resp. C2 in a2). The 
proposition stating that the value of A~ at time tl is in C1 and the value of 
A2 at time t2 is in C2 will be called a history predicate (sometimes for short 
a predicate when no confusion can arise). It will be denoted by 
[S ;AI ,  A2, C1, Cz, tl ,  t2]. 

The extension to any number of elementary predicates is taken 
for granted, so that one may speak of the history predicate 
[S;A1 ..... An, C1,...,Cn, tl ..... tn)]. I shall always order the elementary 
predicates with time increasing 

tl < t2 . ' .  < tn (4.1) 

The case tj = tj+~ will be considered only when Aj and A j+l  commute. In 
such a case, I shall consider the pair (Aj, A j+ 1) as just one observable, so 
that the restriction (4.1) will be always assumed. 

4.2. Families of Propositions 

I shall now build up a structure of probabilized space over the history 
predicates. Let the observables AI,..., An and the times tl,..., tn be kept 
fixed. The direct product a l x . . .  x an of these observables spectra will be 
denoted by X. 

Over X, I introduce a basis. Such a basis is a family {D,} of disjoint 
subsets covering X, i.e., 

D~ c~ D e = ~ (cr ~/~), ~ D~ = X (4.2) 

Every set D~ will be a "rectangular" set, i.e., a direct product 

D~=C~Ix  ... xC~n, C~j~crj (4.3) 

One can, for instance, fix once and for all a basis of sets C~,..., Cpk in each 
spectrum ~k and take for sets D~ constituting the basis the different direct 
products Cil x ... x C~n [in such a case the index cr stands for a multi-index 



Logical Reformulat ion of Q u a n t u m  Mechanics.  I 901 

(i,..., /)]. In this case, the basis that looks like a brick wall will be said to 
be of type I or of Griffiths' type. Otherwise (like a brick wall with 
cornerstones), it will be said to be of type II. 

For instance, let (C~, C*) be a two-set basis of a~ and (C2, C*) be a 
basis of a2; then the family of subsets of X given by 

(c1 x G ) ,  (c ,  x c * ) ,  ( c  ? x c2), ( c *  x c t )  (4.4) 

is a type I (Griffiths) basis of X. On the other hand, the family 

( C  1 x C2)  , (C1 ~ x C2)  , (0-1 x C2" ) (4.5) 

is a type II basis. As indicated by its name, the first type was introduced by 
Griffiths. (2) 1 shall use it, but, quite often, it is more convenient to use bases 
of type I! (note that type I is a special case of type II). 

A history predicate [S, A~,..., An, C~I ..... C .... t~,..., tn] can be 
associated with any set D~ in the basis, using (4.3). For brevity it will be 
denoted by [S, D~, t~ ..... t , ]  or, even more concisely, by [D~]. 

Given X and its basis {D~}, I shall introduce a Boolean lattice B. It 
includes the empty set and, except for that, it is made up of all possible 
unions of sets belonging to {D~}. X belongs to B; union, intersection, and 
complementation are defined on the sets belonging to B in the ordinary 
way and these operations give back sets belonging to B. 

As in probability calculus, one can associate a proposition rD]  with 
any set D belonging to B. Conjunction (and, A ), disjtinction (or, v ), and 
negation (herewith denoted by *) are defined in this family of propositions 
by 

[D]  v [D ' ]  = [ D U D ' ] ,  [D]  A [D ' ]  = [Dc~D'], [ D ] * =  [D*]  

(4.6) 

When the basis {Do } is of type I, each elementary predicate entering a 
history predicate belongs automatically to the family of propositions. Take 
the example of the basis (4.4); then one has, identifying the set C~ in X with 
C 1 x 0"2, 

C~ x a2 = (C1 x C2) u (C,  x C~*) 

so that the elementary predicate [(71, t l ]  is a member of the family of 
propositions that is defined in this respect by 

[C1; tlJ = [Ci ,  C2; tl, t2] v [C1, C2", tl, t2] 

822/53/3-4-23 
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Accordingly, one can also write in that case a history predicate as a logical 
conjunction of elementary predicates 

[C1, C2, tl, t2] = [C1, t~] /x [C2, t2] 

This is not possible in general for a type II family, where the history 
predicates cannot always be decomposed into a conjunction of elementary 
predicates. 

Finally, I sum up all these notions: 

D e f i n i t i o n  6. Let S be an individual isolated physical system. Let 
us be given n observables At,. . . ,An associated with the times t l , . . .  , t n 

ordered according to (4.1). Let X = a l  x . . .  x a ,  be the direct product of 
their spectra and let {D~} be a basis of X as given by Eq. (4.3). Let B be 
the Boolean lattice having this basis, so that each set D belonging" to B can 
be written as a union D~ ~ .. .  u D;.  One associates with (X, B) a family of 
propositions I-D] with conjunction, disjunction, and negation as given by 
Eq. (4.6). Such a family of proposition will be called a quantum represen- 
tation of  logic. 

I stress that this is strict Boolean logic and no unconventional logic. 
What I call here a representation of logic corresponds to what the logicians 
call an interpretation of abstract logic.m) The word "interpretation" would 
be somewhat misleading in the present context, whereas "representation," 
borrowed from group theory, is used here to emphasize that there is but 
one abstract logic with many possible realizations and applications. The 
lattice B is what is called a "universe of discourse" by logicians/H) 

5. THE M E A S U R E  OF A HISTORY PROPOSIT ION 

I want now to associate a mathematical measure with a history 
proposition in order to make a first step toward a later definition of a 
physical probability. One cannot define it in terms of only one projector as 
I did in the case of an elementary predicate. However, there is a way out, 
which was proposed by Griffiths. (2) 

5.1. Ma themat ica l  Measures 

First recall the definition of a measure over a Boolean lattice as it is 
used in mathematics and in probability calculus: 

D e f i n i t i o n  7. Given a set X and a Boolean lattice B on Jr, a 
measure w on (X, B) is a mapping w: B-*  R satisfying the three following 
properties: 
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(i) w(D)~O whatever D in B (5.1) 

(ii) w(X) = 1 (5.2) 

(iii) w(D w D') = w(D) + w(D') when D ~ D' = ~ (5.3) 

I now define such a measure on a lattice of history propositions. 

5.2. The Measure  of a Proposit ion 

To begin with, let us notice some structural aspects of propositions. 
Any lattice of propositions corresponds to a family of subsets in the space 
X =  a 1 x a2 x ... • a n. As shown in Fig. 1, the basic subsets or elementary 
building blocks correspond to an elementary history predicate; a more 
general proposition corresponds to any union of such building blocks. 
It appears that some propositions can be history predicates though 
not elementary, i.e., they are associated with a direct product 
Do = C1 • ..- • Cn, not all the sets Ck being elementary tiles in ak, but the 
union of several such elementary tiles. Similarly, any proposition 
corresponds to a unique union of elementary history predicates (i.e., to a 

T 

~2 

c///, 

= ,  : . , �9 i �84 �9 . . ~ ~ . , , n  . ~  

. . . . .  " . . . . . .  : 7 "  

I m 

1 

Fig. 1. Two observables A1 and A2 have their spectra o 1 and a 2 divided into several elemen- 
tary subsets. The direct product X =  cr~ x a 2 is accordingly divided into elementary building 
blocks (a) corresponding to elementary history predicates and constituting the basis of a 
Griffiths family (type I). Any union of these building blocks corresponds to a proposition in 
the family. The set (b) is an example of history predicate not associated with an element of the 
basis. The set (c) represents a typical general proposition. 
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union of subsets belonging to the basis), but it might also be the union of 
some nonelementary history predicates. One shall have to keep this kind of 
multiple decomposition in mind. 

To define the measure of the history predicate Do = C1 • -.- • C,, first 
consider the case where p =  1~')(4'1, Let Fk be the projector associated 
with Ck. Defining 

1(~ ) = F~(t~)... F2(t2) F~(tl) I~ ) 

I shall define the measure of D o as 

w(Do) = (~b [ ~b) (5.4) 

or equivalently 

w(Do) = Tr{F.( tn) . . -  F2(t2) F~(tl) pF~(tl) F2(t2)-'- Fn(tn)} (5.5) 

A more general proposition D corresponding to the union 
D~ w Dp w .-- w Dz of several history predicates D~, D~,..., D~ will be given 
the measure 

w(D) = w(D~) + w(D~) + . . .  + w(D~) (5.6) 

D e f i n i t i o n  8. The measure of any history predicate is defined by 
Eq. (5.5) and the measure of any proposition by Eq. (5.6), p being the state 
operator. 

Notice that, using cyclic invariance of the trace together with the 
property FZ(tn)=Fn(t,), Eq. (5.5) can be written as 

w(Do) = T r [ r , _ l ( t , _ l ) . . - F l ( t l )  pFl( t l ) . . . r ,_ l ( t ,_ l )  V,(t,)] (5.7) 

or, still more explicitly, 

w(Do)=Tr[F,_lU(t, 1--tn z ) '"FlU(t l )pU-l( t l )  

xFI""U- I ( t ,  1--t~-2)F~-i 

• U-~(tn-t~ 1)F,,U(t~-t~_t) ] (5.8) 

A simple way to justify the nontrivial definition (5.5) is the following one: 
Use the Feynman path integration method, (lz) which is known to be 
equivalent to the Schr6dinger equation, i.e., to Rule 3. Then, if the 
projectors F1 . - -F ,  refer only to position or momentum operators, the 
matrix element 

(Xo, 0[ Fl(tl). . .Fn(t,)Ixxtf) (tf> t~) 
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is obtained from the Feynman path integral 

(x~  sl-[ [dx(t) dp(t)/2rc]expii'I l fo (p d x -  H dt) (5.9) 

by restricting the integration over x(tl) or p(t l)  to a finite set, together with 
similar restrictions for the integrations at times t2--. t,. Then, in the case 
where p = Ix0, 0 ) ( x  0, 0[, expression (5.5) is nothing but 

f &  I(Xo, 01 x, tf)'l 2 

where the prime indicates the truncation in the intermediate path 
integrations. From this point of view, the definition (5.5) becomes quite 
natural. (Similar quantities also occur in the standard theory. (13)) 
Obviously, satisfying the axioms of probability calculus in such a formula 
raises a problem, since Eq. (5.3) requires the additivity of probabilities, 
whereas one would find here an addition of amplitudes. 

5.3.  C o n s i s t e n c y  C o n d i t i o n s  

Definition 8 should be consistent with the assumptions of probability 
calculus. More precisely: 

(A) The definition should define a unique measure: Given a non- 
elementary history predicate, one can define its measure in at least two 
different ways, either directly by Eq. (5.5) or, 'using a decomposition in 
elementary history predicates, by Eq. (5.6). More generally, any decom- 
position of a general set D = D ~ w D ~ w  ..- ~D~ into a sum of history 
predicates should always give the same result. 

(B) The axioms (5.1)-(5.3) should be satisfied. 

It will be found that these consistency requirements impose strong 
restrictions upon the families of propositions one can introduce. 

The positivity condiction (5.1) is obviously satisfied by Eq. (5.5) in the 
special case where p = [~)(~pf. In the general case, one can write 
p = ( I / N ) Z ~  t~)(eP~l ,  so that positivity is still satisfied. The same is true 
for the sum in Eq. (5.6). 

Unicity is the essential constraint. In fact, it boils down to the 
following condition C: Let Do be any nonelementary history predicate 
and D~ w D~ w ... w D;. its unique decomposition as a sum of elementary 
history predicates; then the two expressions (5.5) and (5.6) for w(Do) 
should coincide. This is obviously a necessary condition for unicity. It is 
also sufficient because any decomposit ion of a general proposition into 
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several history predicates will then yield the same measure, namely the sum 
of the measures of its constituting elementary predicates. It turns out that 
the axioms of probability calculus are then automatically satisfied: D ~ D' 
in Eq. (5.3) is the union of the elementary predicates building up, respec- 
tively, D and D', so that Eq. (5.3) is trivial. Condition (5.2) also follows 
because X is the history predicate associated with the set a~ x o- 2 x . ' '  )< O" n 
and each constituting set 0-k has for its associated projector the identity 
operator, so that condition (5.2) reduces to Tr p = 1. 

How Condition C can be expressed as a set of algebraic relations is a 
problem that is solved in the Appendix. Here I just give a simple 
illustrative example. Consider the case of two observables A1 and A 2 at 
times t~ < t2. Their spectra al and a2 are respectively divided into two com- 
plementary sets C1, C* and C2, C* with projectors F1, F~*, F2, F*. The 
history predicate set ~1 x C2 is the union of the two elementary-history 
predicate sets C1 x C2 and C* x C2, so that Condition C should be applied 
to it. This condition reads [omitting the explicit mention of the time, so 
that I write, for instance, F~ for F~(t~)]: 

Tr { IplF 2 } = Tr { F 1 pF 1 F2 } + Tr { F*pF*F 2 } 

Replacing I by E1 + E* and developing the left-hand side of this equation, 
one gets 

Tr{FlpF*F2} + T r { r * p r l F 2 }  = 0 

Using the Hermiticity of projectors and cyclic invariance of the trace, one 
finds that the second term is the complex conjugate of the first one, so that 
the condition becomes 

Re Tr(F~pF*F2) = 0 (5.10) 

Similarly, for the history predicate a I x C*, one gets 

Re Yr(F~ pF*V* ) = 0 

However, because of the relations F2 + F* = I, F~F* = 0, and cyclic trace 
invariance, this is equivalent to Eq. (5.10). The only other nonelementary 
history predicates are C1 x a2 and C* x 0 2 and Condition C is trivially 
satified for them, since it reads, for instance, 

Tr(FI pFII) = Tr(F~ pF~ F2) + Tr(F~ pF~ F*)  

So, in this simple case, there is only one consistency condition, that is, 
(5.10). It can be written in a different form, which is more typical of the 
general case. One can write 

FI pF* + F*pr~ = IF1, [p, FI* ] ] 
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as one sees easily by developing the double commutator and using 
EIE*=E*EI=O. Therefore condition (5.10) can be also written in the 
form 

Tr{fF1,  [p, F * ] ]  Fz} = 0  (5.11) 

Conditions of this type are fundamental in the present approach and 
they are called consistency conditions. (2~ 

Defini t ion 9. The measure of propositions defined by Eqs. (5.5) 
and (5.6) must satisfy some consistency conditions in order to be unique 
and to satisfy the mathematical properties of a measure. 

Each such condition consists in the vanishing of the trace of a multiple 
commutator of projectors, as shown in the Appendix, or equivalently as the 
vanishing of the real part of the trace of a product of projectors in simple 
cases. Griffiths (2~ has shown how to write them all in that last form when 
the basis of the proposition family is a Griffiths basis, but the conditions he 
gave are unnecessarily numerous. The smallest number of necessary 
consistency conditions is given in the Appendix. 

A simple physical example of an inconsistent family of propositions is 
provided by an interference experiment (Griffiths(a3~; see also II): a screen 
is pierced by two holes. It is possible to associate two projectors F~ and F'~ 
with the elementary predicates stating that a particle went through one of 
them. Let us put another screen behind the first one, divide it into regions 
C~2,..., Cm2,..., and consider the family of elementary predicates with projec- 
tors F,~ 2 stating that the particle hit the second screen in region C,,2. Then 
it can be shown that the family of propositions including both families of 
predicates is inconsistent. Accordingly, this formalism provides a con- 
venient criterion for selecting families of physical propositions that can be 
considered as logically meaningful. Other examples will be given in II. 

Finally, I still give another definition: 

Defini t ion 10. A physical representation of logic satisfying all the 
necessary consistency conditions will be called a consistent quantum 
representation of logic. 

6. I M P L I C A T I O N  IN Q U A N T U M  M E C H A N I C S  

6.1. Impl ica t ion  

I have defined history predicates [S ;A 1,..., A~, C1 ..... C~, tl ..... tnJ 
from which I have built up quantum representations of logic with 
propositions [D, tl ..... t , ]  (omitting some notation) or simply [D].  I have 
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found when such a representation is consistent. Now, I want to make a 
significant step further. After all, logic is not only a description of a system 
by propositions, but it is essentially a rule for reasoning, i.e., it must allow 
implication. Implication (here denoted by =~), i.e., the ability to use a 
sentence such as, "If such proposition, then such other proposition," is the 
building block of science, either in mathematics or in physics. 

For the sake of completeness, let us recall what axioms have to be 
satisfied in logic by a rule of implication: 

(i) if [ D ] = ~ [ O ' ]  and [ D ' ] = ~ [ D ] ,  then one must have 
[D] = [D'] .  

(ii) If [D] ~ [D']  and [D']  ~ [D"],  one must have [D] =~ [D"]. 

(iii) [D] ~ [D]. 

(iv) If [ D " ] ~  [D] and [ D " ] ~  [D'] ,  one must have 
[D"~ ~ [D]  A [D'] .  

(v) [D]=> [ D ] v  [D'] .  

(vi) [D] A [D']=> [D]. 

(vii) If [D] ~ [D"]  and [ D ' ] ~  [D"],  one must have 
[D] v [ D ' ]  ~ [D"]. 

(viii) If [D] ~ [D'] ,  one must have [D']*  ~ [D]* 

We shall not use the empty proposition 0 nor the total proposition 1 
such that 0 ~ [ D ]  ~ I whatever [D]. This is known to be a convenient but 
not a necessary rule for implication. (m 

We have defined the measure w(D) of a proposition. Then, in the case 
when w(D)r we can define the conditional measure of proposition [D']  
given [D] as given by 

w(D'ID) = w(D /x D')/w(D) (6.1) 

Then we shall use the following theorem in probability theory (14) that 
is very easily proved by checking the above axioms one by one: 

Theorem. When w(D):/:O and w(D')r 1, the condition 

w(D'ID) = 1 (6.2) 

satisfies the logical axioms defining an implication D =~ D'. 

The second condition w(D') ~ 1 comes from condition (viii), which is 
meaningful only when w(D'*)r This is the definition of implication I 
shall use in the consistent representations of logic. 
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6.2. Complementar i ty  

It should be noticed that a given physical system in a given initial state 
may allow a large number of consistent representations of logic, in fact, as 
many as one can consistently choose the A~, the t k, and the D~. This 
freedom is what the complementary principle becomes in the present 
approach. 

6.3. Operat ions upon Representat ions of  Logic 

These representations can be extended or restricted by the following 
operations: 

Def in i t i on  11. Let L~= [S, {D~}, tl ..... tn] be a consistent 
representation of logic. One can reduce it by allowing two different subsets 
C,k and C~,k to merge into only one subset of ~k. At the limit where all of 
them merge into the whole of cr k, one can as well cease to mention tk and 
Ak in the history predicates. 

One can also extend Lz, either by dividing its basis further or by 
adding other elementary predicates relative to a new variable A with a new 
time t that may either be prior to t~ although still positive, posterior to tn, 
or intermediate between t~ and tn. The necessary additional consistency 
conditions should of course be valid. 

These two techniques make it possible to simplify a discussion or to 
enrich it. For instance, the propositions relating to a subsystem Z" of S can 
be extended to propositions involving the whole of S. The discussion of the 
measurement process will use such possibilities. 

6.4. Noncontrad ic t ion  

I now state an important, although somewhat trivial, theorem showing 
that, once consistency is satisfied, no contradiction can ever occur. 

Theorem 1. Let L1 and L 2 be two consistent representations of 
logic, both allowing the two propositions [D] and [D'].  If one has 
[D] ~ [D']  in L1, then one also has [D] ~ [D']  in L2. 

Sketch of the Proof. It is easy to show, although somewhat lengthy 
in full rigor, that the probabilities w(D), w(D'), and w(D A D') only 
depend upon the propositions and not upon their embedding logic. 

One important application of this theorem will consist in proving an 
implication [ D ] ~  [D'] by using the smallest representation of logic 
containing both [D] and [D'] .  Examples will be given in II. 
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It may be worth giving here an example that was considered by 
Griffith (2) and later criticized on logical grounds by d'Espagnat. (15) One 
considers a spin-l/2 system with its two-dimensional Hilbert space. Denote, 
for instance, by [-x, m, t l]  the elementary predicate stating that the spin 
x-component at time t I is equal to m/2 (m = _+1). Let us take the initial 
state p=F([x ,  1, 0]), i.e., the initial value of sx is taken to be 1/2. Also 
consider two representations of logic: on one hand, L1 containing the 
elementary predicates [-x, m', t~], [z, m, t2], and on the other hand, L 2 
containing [z, m", t~], [-z, m, t2] .  The calculations are straightforward and 
they have been mostly done by Griffiths, so that I shall not reproduce 
them. The results are the following: 

1. Both L1 and L2 are consistent. 

2. In L2, one has [z, m, t2] ~ [z, m, tl]. 

3. In L1 one cannot say that the initial state p (that is, a projector) 
implies [x, 1, t~], because p ~  Ix, 1, t l] should be equivalent to 
[x, 1, t~]* ~ p * ,  but p* (the negation of the initial state) does not exist as 
a predicate in L~. 

The consistent use of implication is the main difference between what 
is obtained here and Griffiths'discussion. It does not lead to any incon- 
sistency, as d'Espagnat could find in Griffiths' formulation, where it was 
said that the initial predicate could entail the veracity of Ix, 1, tl]. No such 
statement appears in the present formulation. 

6.5. Approximate Implications 

Finally, I relax the perhaps too tight conditions imposed upon con- 
sistency and implications: 

Defini t ion 12. Given a very small number ~, a representation of 
logic containing a finite number of propositions is consistent up to order 
if the real part occurring in the consistency conditions has absolute values 
smaller than e. I shall say that D=~D' up to order e if ]w(D'ID)-11 <~. 

The first definition is justified by the fact that in such a case, one 
can quite often slightly change the observables in order to satisfy exactly 
the consistency conditions. I mention it because Griffiths used such 
approximations. (2) However, I shall try to avoid it for fear of dealing with 
"approximate" logic. 

The second definition is a foretaste of classical physics a s  founded 
upon quantum mechanics: for instance, at least in principle, the earth 
might suddenly, with a nonzero probability, leave the sun and orbit around 
Sirius by tunnel effect. I want to state precisely how to neglect such effects 
when stating that the sun will rise tomorrow. 
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7. C L A S S I C A L  P R O P O S I T I O N S  

The logical link between classical physics and quantum physics has 
always been a stumbling block in the interpretation of quantum 
mechanics. (7,8,16) 

7.1. Classical  Proposi t ions  

The predicates of classical mechanics look at first sight quite different 
from the ones I have introduced up to now. Typically, a classical elemen- 
tary predicate would express that the state of a physical system S is 
represented at time tl by a point in phase space lying within a given cell C 
of phase space. My first aim will consist in giving a quantum meaning to 
such a statement. 

In classical physics, conjunction and disjunction correspond to inter- 
section and union of such cells, negation to the complementary set in phase 
space. Implication is generally defined by the inclusion of one cell into 
another one, so that the whole setup is quite different from what has been 
proposed up to this point for quantum mechanics. 

My program, however, will be to recover completely this form of 
classical logic as a result of quantum logic, at least in favorable circum- 
stances. To begin with, I shall associate a projector in Hilbert space with a 
classical predicate saying that the state of the system is in a cell of phase 
space. 

1.2. Phase Space  

First, I have to specify what is meant by phase space, from a quantum 
point of view. Consider once again the case of a particle as a typical 
example. 

The mathematical notion of phase space arises from the quantum 
notions of Hilbert space and observables in the following way. (17'18) To an 
observable A, one can associate a real function a(x, p) of two variables 
(x, p) (i.e., a function on phase space) that is called the symbol of A and is 
given by 

a(x,p)=fdx'dx"J[x-(x'+x")/2]exp[ip(x'-x")](x'j A Ix") (7.1) 

This leads us to the so-called Weyl calculus, which introduces phase space 
in a mathematically well-defined way. (1~) Conversely, the action of the 
operator A on a wave function u(x) gives a wave function v(x) that satisfies 

v(x)=fexp[-ip(x-x')]a[(x+x')/2, p]u(x')dx'dp/(2rc) (7.2) 
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Despite its apparently cumbersome form, this correspondence between 
operators and functions on phase space is extremely fruitful in the theory of 
partial differential equations (19) and it can also be used in quantum 
mechanics. (18'2~ The main point is that, when we look for some operator 
A, it is enough to find its so-called Wsymbol a(x, p). The theory of sym- 
bols is called microanalysis and it is a very active part of contemporary 
mathematics.(19) 

I now state what is meant by a macroscopic cell in phase space: 

D e f i n i t i o n  1 3. A cell in phase space is said to be a macroscopic cell 
if it has the two following properties: (1) Its volume (in units where 
h/2zt = 1) is large. (2) Its boundary is regular. 

Here regularity is a technical mathematical condition. It can be stated 
precisely as follows: Let L denote a typical size of C for any x direction and 
P a similar size for any p direction. Then one assumes that the curvature of 
the boundary in the metric 

ds2=(L-2 dx2 + p 2 dp2)(l + L-2x2 + p 2p2) 

is of the order of unity in dimensionless variables L-~x,  P lp. 
The quantum formulation of a classical predicate comes from the 

following theorem. 

T h o o r o m  2. To a macroscopic cell, in phase space, one can 
associate an approximate projecto ~b(c) and a corresponding state operator 
~b/Tr qs. 

This is a well-known theorem (la8'2~) (see also III). As an example I 
sketch what is actually an approximate projector when C is taken to be the 
simple cell in a two-dimensional phase space,(21) 

x 2 + p 2 < R  2 (7.3) 

in convenient units, R being a large number. Here I shall not use 
microlocal analysis, but a wavelet expansion (=) that is a special case of it. 
Define the functions 

g(q'P)(x) = e x p [ ( - i p q / 2 )  + ipx] g(x - q) 

where g(x) is the Gaussian ~--1/4 exp(--X2/2). Define an operator ~ acting 
on a wave function u by 

q~u = (2r 0 1 ;C dp dq g(P'q)• g(P'q) [U) (7.4) 

When C is the disk (7.3), it is easily shown that q~ commutes with the 
harmonic oscillator Hamiltonian h =  1/2(x2+p2). Therefore, its eigen- 



Logical Reformulat ion of Quantum Mechanics.  I 913 

vectors are the Hermite functions Hn(x). The corresponding eigenvalues ).n 
turn out to be given by 

~ R2/2 
)~,, = (n!) 1 dt tnexp(_ l )  

~0 

It is easily found that 2 n is positive, nearly equal to 1 for n < Rz/2, very 
small for n > R2/2, with a transition region of size R around R2/2, where 2,, 
gradually steps down from 1 to 0. This is what I call an approximate 
projector. When entering a trace as, for instance, in a predicate measure, 
the relatively small number of eigenvalues lying between 1 and 0 will not 
cause the results to differ appreciably from those obtained from a strict 
projector. 

The general case, in several dimensions for any macroscopic cell C, is 
of course more complicated. One can prove that the operator 
c~45 = q~2(C) - q~(C) has a norm of the order of 1 and a trace of the order of 
d (Tr  ~(C)) ,  where 

A = (h/LP) 1/3 

I shall treat r as if it were an exact projector. 
It might be mentioned that such an approximate projector is not 

unique. For instance, one might have used Gaussians with an uncertainty 
in x different from 1, or use other kinds of functions, or even not use 
wavelet expansion and work with a more general microlocal construction. 
The relative errors are always of the same order3183 

Different macroscopic cells have the following important  property 
(see III). 

T h e o r e m  3. Let C and C' be any two fixed macroscopic cells in 
phase space and let the Planck constant h tend to zero; then the com- 
mutator  [~b(C), ~ ( C ' ) ]  tends to zero in norm. More precisely, it has a 
norm smaller than 1 and a trace of order d inf(Tr ~b(C), Tr ~b(C')) in 
absolute value, with A as above. 

7.3. Classical Logic as a Limit 

I now come to the relation between classical logic and consistent 
quantum representations of logic. The first step will again be a 
mathematical  definition. 

Def in i t i on  14. A Hamiltonian H is said to be regular during a 
time T for a macroscopic cell C if its classical version [i.e., its symbol 
h(x,p)],  when used to generate a classical motion via Hamilton's  
equations, preserves the macroscopic character of C during the time 
interval [0, T]. 
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For example, for mixing Hamiltonians (e.g., Kolmogorov's 
K-flows(23)), T is a rather short but macroscopic time. For the harmonic 
oscillator, it is infinite; for a free particle, it is only limited by the spreading 
of wave packets (ht/m) l/z, so that T can be taken very large when C is large 
enough. 

Then, one has the following theorem that in principle should essen- 
tially reduce quantum physics to classical physics (including both classical 
mechanics and classical logic) when one is dealing with macroscopic cells 
and regular Hamittonians. 

T h e o r e m  4. Assume that a physical system is initially in a state 
defined by a finite macroscopic cell Co, i.e., by a state operator 
p = q~(Co)/Tr[qS(Co)]. Let us also assume that the Hamiltonian is regular 
for this cell of phase space during a time T. Let us call C 1,..., Cn the cells 
that are the transforms of Co by classical motion for a finite sequence of 
times tl < ... < t, < T. Let us introduce the smallest quantum represen- 
tation of logic L containing the corresponding predicates and their 
negations. 

Then, when the Planck constant tends to zero, one has the following 
limiting results: 

1. L is consistent. 

2. L is a sublogic (i.e., a Boolean subalgebra) of classical logic. 

3. Denoting by [Ck] the proposition stating that the system is in cell 
Ck at time tk, one has [Cj] ~ [Ck] whatever tj and tk, both positive and 
smaller than T. 

The complete proof of this theorem has only been obtained recently 
and it needs all the powerful machinery of microlocal analysis. It will be left 
for a more mathematical publication. I only add the following precisions: 
Let L and P be, as above, a typical size of C in the x directions and in the 
p directions. Let A = (h/LP) 1/3. Then, if cb(C, tk)-~ U(tk)cP(Co) U-l(tk),  
putting ~q~ = q~(C, tk) - q~(Ck), it can be shown that the norm of 6~b is of 
the order of 1 and its trace of the order of A(Tr q~(Co) ). The above 
implications are valid up to an error of order 3. 

It should be noticed that what has been called here a macroscopic cell 
does not assume that the physical system is itself macroscopic. 

7.4. Macroscopic  Objects 

The case of macroscopic objects is far from simple. To specify that one 
deals with a macroscopic object involves two conditions~8~: (i) the physical 
system has a large number of degrees of freedom; (ii) it is in a state that 
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can be reliably described by some collective variables. Generally, only the 
collective variables are given in macroscopic cells of their relevant phase 
space, whereas the state of the remaining microscopic variables is still 
described by an ordinary state operator and often in practice by a density 
operator. The whole subject of irreversible thermodynamics lies behind 
such a description. However, it is genally granted that such a description is 
possible in principle and many specific examples are known in the form of 
models. 

I cannot say more, except to believe, as everybody does, that once this 
is done, the averaged collective Hamiltonian can in many cases be con- 
sidered as regular, in the sense of Definition 15, so that Theorem 4 may be 
expected to hold for the cells describing the collective variables. I say that 
such a system is collectively regular. There is a close relation between 
collectively regular macroscopic systems and systems having a classical 
dynamical limit that behaves in a deterministic way, at least for a finite 
length of time. 

7.5.  P o t e n t i a l  Facts  

Assuming this, I now come to an essential point: How to exhibit facts 
from an intrinsically probabilistic theory. 

I first define this basic notion for a system that remains in a 
macroscopic cell. The simplest example is given by a particle that is initially 
in a state defined by the projector oh(Co) of a macroscopic cell. 

Defini t ion 15. Let an isolated individual physical system S be 
initially in a state with the state projector ~(C0) associated with a 
macroscopic cell in phase space Co. Assume that the Hamiltonian is 
regular for C O during time T and denote by C~ the cell transformed from C O 
at time t under classical motion. Then the occurrence of S in the cells Ct at 
time t ( t<  T) is a potential fact because one has [ C t ] ~  [C,,] and 
[Cc] ~ [C,]  whatever t and t' in the time interval (0, T). 

Stated in words, a potential fact is a chain of macroscopic events, not 
necessarily concerning a macroscopic object, that leave a memory allowing 
a reconstruction of the past and a deterministic prediction of the future 
during a finite time interval. Their existence is a consequence of Theorem 4. 
Note that I say "potential fact" rather than just "fact" because, up to now, 
one can only consider such a "fact" as being a chain of propositions. 

An interesting example is provided by Wigner's beam recombination 
experiment(24"7): A spin-l/2 particle is initially in a pure spin state s x = 1/2, 
whereas its initial position-momentum state at time zero is described by a 
macroscopic cell Co corresponding to an initial beam going along the 
y axis. This beam goes through a Stern-Gerlach apparatus Sz able to 
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separate the two spin states s~= +_1/2 that may give rise to two well- 
separated beams, where, for instance, the beam followed by a particle with 
sz = 1/2 has a positive z coordinate. Call Cz+ a typical cell in phase space 
describing the classical macroscopic situation of the upper beam at some 
time t. A similar cell for the other beam will be denoted by Cz-. An 
external magnetic field acting upon the particle magnetic moment can 
recombine the two beams into a single one following again the y axis. Call 
C' a typical cell describing this recombined beam. Finally, this beam 
crosses another Stern-Gerlach apparatus Sx able to separate the two spin 
states sx = _+ 1/2. 

The occurrence of the particle in the cells Cz+.t is, according to 
Definition 15, a potential fact as long as the two beams Cz+t and Cz-.t 
do not recombine. The point is that, in that case and assuming 
the Hamiltonian to be regular, one has [Cz+t]=~ECz,+t,] and 
[C~,+t,] =~ [Cz+~] as a result of Theorem 4, t and t' denoting two times 
posterior to the crossing of the apparatus S~ and prior to the recom- 
bination of the beams. In order to prove these implications, one must use 
[Cz+t] ~ [s~= 1/2, t l ,  which determines the trajectory in the exterior 
magnetic field. 

This chain of potential facts breaks up after recombination. Indeed, 
one has [Cz+,t] ~ [C'r] A [s~ = 1/2, t '],  so that [Cz+t] => [C;,], but one 
cannot have the converse implication [C't,]=*.[Cz+,], only [C'~,]~ 
[Cz+,] v [Cz-,,], so that the conditions of Definition 15 are not satisfied. 

It should benoticed that I have used here an absolute time and that 
relativity has not been taken into account. So, the notion of potential fact 
as given in Definition 15 is restricted to nonrelativistic physics. This is a 
severe limitation, but it is balanced by the advantage of being a rather 
precise notion. 

Things become more delicate when one deals with an incompletely 
specified system, such as a macroscopic object. The collective variables may 
be insufficient to predict the evolution of the system and many things could 
remain hidden in the microscopic variables. An example is Schr6dinger's 
cat experiment, where we take the macroscopic object to be the box 
containing the cat and the radioactive source. Of course, there are many 
macroscopic systems that cannot keep a trace, as may happen, for instance, 
in a turbulent flow. One must in general restrict the quest for facts to a 
reliable description by a small number of classically deterministic collective 
variables, in practice to what I called a classically regular system. 

It should be mentioned that an intrinsic definition of collective 
variables, using only the quantum dynamical framework for a given state, 
remains one of the few important problems in theoretical physics that has 
practically not been touched upon. 
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The objects allowing potential facts may be said to keep a memory. A 
memory (e.g., the track of a particle in a crystal) is described by a classical 
proposition relative to some collective variables (often quite many of them, 
but very few when compared to the number of degrees of freedom) from 
which one can logically reconstruct the past (e.g., perform an autopsy of 
Schr6dinger's cat or take its temperature). However, this logic is the 
classical one, so that one must understand what is the status of logic in a 
world obeying quantum mechanics. To do so, one must assert more 
precisely the physical status of the consistent quantum representations of 
logic. 

8. AN INTERPRETATIVE A X I O M  

I shall try to put some order into difficult questions by stating a new 
bold rule for founding physics: 

Rule 5. The consistent quantum representations of logic provide all 
the possible descriptions of a physical system S in a given initial state and 
they also provide the correct physical means for reasoning about them. 

It should be stressed that Rule 5 does not assume a priori the use of 
classical logic. On the contrary, classical logic as we apply it everyday is 
considered here as a consequence of Rule 5 using Theorem 4. 

Furthermore, it should be stressed that Rule 5 provides the means of 
replacing any talkative argument about an experimental situation in quan- 
tum mechanics by a calculation. Given any tentative or intuitive reasoning 
about such a question or, let us say, a preformalized argument, one can 
check whether all its statements enter into a consistent representation of 
logic and whether all its logical links are justified by an implication. Such 
a procedure may be considered as providing a quantum calculus of 
propositions that probably could be used to eliminate many spurious 
discussions from the field. Examples will be given in II. 

8.1. The Existence of Facts 

Using Rule 5, one can derive from Theorem 4 that a system initially 
defined by a state projector qs(C) obeys classical logic if its Hamiltonian is 
regular. I shall also assume that there exists macroscopic systems, so that 
Theorem 4 applies to their collective variables. If it happens that their 
initial state allows them to be collectively regular, then these objects obey 
classical dynamics and their description obeys classical logic. 

Whether such collectively regular systems 'may exist theoretically and 
how one should explicitly define the collective variables are questions 

822/53/3-4-24 
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leading far beyond the present limits of theoretical investigation. It is 
enough to notice that nothing known tells us that the existence of collec- 
tively regular systems is impossible and that we see them occurring 
everyday, so the answer to these questions can be reasonably assumed to 
be positive, at least in principle. 

Restricting attention to such collectively regular objects (e.g., a 
voltmeter), they can be described by classical logic, here understood as a 
special limiting case of consistent quantum logics. Then the sentence 
describing potential facts in Definition 15 means that the state projector of 
the object 45(Co) is an initial datum resulting from its previous history. 
Probably, many systems tend spontaneously to generate a chain of poten- 
tial facts, even when starting from a state that does not belong to a family 
of potential facts: think, for instance, of a turbulent liquid, dissipating 
velocity, cooling down by radiation, and turning into a crystal. The collec- 
tive variables describing the shape and the kinematics of the cr~,stal are 
then able to describe potential facts. Of course, turning these common 
sense considerations into a theoretical treatment involves a good 
understanding of irreversible thermodynamics. 

My conclusion will not be that potential facts must exist in quantum 
mechanics, but that nothing known forbids them to exist. Their existence 
will be taken as granted. 

8.2. W h a t  is True? 

Finally, in accordance with Heisenberg, (25) one can restrict the word 
"true" in an actual sense to facts. Here one does not speak of potential facts 
but of situations actually occurring at the macroscopic level, as one can see 
them and as the theory in principle describes them, at least by propositions. 
Among macroscopic objects, such facts may exist as a matter of principle, 
according to the preceding considerations. The link with experiment is to 
provoke and to observe them. 

From some facts that are actually true, one can logically derive some 
quantum propositions by implication. For instance, it will be shown in II 
that, when the decay of a particle is a fact and when one of its decay 
products Q is found to be actually in a small region of space by being 
detected by a counter some distance away, then one can tell by implication 
that Q was in some other region on the way at a previous time t. Shall we 
say, however, that this implied statement is also true? It would be logically 
dangerous because another consistent representation of logic also allows us 
to derive by implication that the momentum of Q is in a well-defined 
region of momentum space with the same choice of time. Both statements 
cannot be said logically to be true, because they would then have to be true 
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together. Here we meet once again the p?oblem of complementarity as 
when discussing light either as an electromagnetic field or as made up of 
photons. 

The occurrence of complementarity through the variety of consistent 
quantum representations of logic should therefore make us careful when 
using the word "true." Accordingly, I propose the following definition: 

De f in i t i on  16. Any proposition that can be derived by implication 
from actual facts is said to be a reliable statement. 

Reliable statements can never meet contradiction as a result of 
Theorem 1: no other representation of logic including the corresponding 
proposition and the facts will ever lead to a contradiction. 

9. T H E  T H E O R Y  OF M E A S U R E M E N T  

I now discuss the theory of measurement as it occurs in the present 
approach. First, since we have the notion of fact at our disposal, it is 
possible to describe the result of an individual measurement within the 
framework of quantum mechanics without referring explicitly to classical 
physics and classical logic. Accordingly, I shall treat both the measured 
system and the measuring apparatus as being quantum systems and restrict 
considerations to an actual measurement for which the result given by the 
apparatus is an actual fact. 

9.1. Descr ip t ion  and N o t a t i o n  

Here I fix the notations. The measurement is done on a quantum 
system Q (e.g., a particle) that is described by a Hilbert space ~ Q  and 
Hamiltonian H Q. It is initially in a state described by the state operator pQ. 

The measurement is realized by using a macroscopic apparatus M 
with Hilbert space ~ f g  and Hamiltonian H g. As a measuring aparatus, it 
has the following property: one of its degrees of freedom describes, for 
instance, a needle N that can have its position in well-separated intervals 
Jo, J1,..., J ,  .... of the real axis. To these intervals are associated projectors 
E~t,..., E ~  .... on orthogonal subspaces of ~ g .  Let us call N the apparatus 
observable describing the position of the needle. Initially, the needle is in 
position zero (i.e., in Jo) and I shall simply take for the corresponding state 
operator pM = E~t/Tr E~t. 

Let us consider an observable A associated with the quantum system 
Q. To begin with, consider the simple case where A has a nondegenerate 
discrete spectrum {al, a2 . . . . .  a ..... }. 
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The complete Hilbert space of the system Q + M is the tensor product 
= j f Q  | ~ g ;  the complete Hamiltonian will be written as 

H = H Q + H M + Hint = Ho + Hint 

where Hi,t represents the interaction between Q and M. The initial state 
operator is taken to be pO| pM. 

9.2. Character iz ing a Measur ing Apparatus 

M is supposed to be a measuring apparatus for the quantum 
dynamical variable A. This property can be expressed as a characteristic of 
the interaction between Q and M: Denote by lan) the normed eigenstates 
of A in ~ Q .  Let Inb) represent the orthonormal states of the apparatus 
with the needle being in interval Jn, b standing for all the other quantum 
numbers. The states in the overall Hilbert space ~ can then be expanded 
along the orthogonal basis lap) | ]nb ) = Inbap ). 

Assume that the interaction takes place during a short time interval 
between time t - e  and t. The evolution operators U ( t ' ) = e x p ( - i H t ' )  for 
the overall system and Uo( t ' )=exp( - iHot ' )  for a noninteracting system 
are therefore related by 

U( t ' )=Uo( t ' )  for t ' < t - e  

U(t') = Uo( t ' -  t) S U o ( t -  e) for t' > t 
(9.1) 

Here S plays the role of the S-matrix (collision matrix) between Q and M, 
the collision occurring between times t - e  and t. 

The fact that M is a measuring apparatus can be expressed as a 
property of the operator S. It is essentially a partial diagonalization of S in 
the variables A and N such that 

S 10, b, an)  = ~  O~! In, b', a , )  (9.2) 
b '  

The fact that a n appears in the left-hand side of Eq. (9.2) means that the 
observable A is not changed during the interaction. This is characteristic of 
a so-called measurement of the first kind. (26) Note also that the initial state 
of the apparatus does not appear in the left-hand side, meaning that the 
measurement is perfectly efficient. Of course, the essential property is that 
one finds the final state of M with the needle in position n (N = n) when the 
system Q is initially in the state A = an. 
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9.3.  M e a s u r e m e n t  as Par t  o f  a H i s t o r y  

I shall now recast measurement theory in the framework of the present 
proposition calculus. It will be instructive to consider not only the 
measurement as such, but also to find how a true fact that is registered by 
the measuring apparatus at time t enters a consistent logical description of 
the measured system Q. Accordingly, I also want to introduce elementary 
predicates describing Q before interacton, when it is still an isolated system, 
and also after the interaction when it is once again isolated. 

In order to be sufficiently general without introducing too heavy 
notations, I restrict consideration to the following case: At a time tl before 
t - e ,  I consider the elementary predicate [Q, A1, C1, t~] for some obser- 
vable A 1 being in some range C1, as well as its negation. Its projector will 
be denoted by F~(t~). Let us also consider the elementary history predicate 
[Q, A2, A3, C2, C3, t2, t3] with t < t 2 < t 3. The projector associated with 
the elementary predicate [Q, Az, C2, t2] (resp. [Q, A3, C3, t3]) will be 
denoted by G2(t2) [resp. G3(t3) ]. I also introduce the elementary predicates ~ 
that express the value of the measured quantity A before and after 
measurement, i.e., [Q, A, an, t -  e] and [Q, A, a, ,  t]. 

Measurement will be described by the elementary predicate IN, n, t] 
expressing the situation of the measuring apparatus just after interaction, 
or, in words, "At time t, the needle is in position n." It is associated with a 
projector En(t). All the projectors can be understood either in the relevant 
Hilbert space or in the overall Hilbert space, but for a trivial tensor 
multiplication by a unit matrix. 

In order to define a representation of logic containing all these 
predicates, I use the basic set 

X - ~  OAl  x o A x a N x o A x 0"A2 X O'A3 (9.3) 

I shall write the basis of the proposition lattice B in a convenient 
short-hand notation where the same letter denotes a predicate, a projector, 
or their complements: let f l ,  for instance, denote either the subset C~, the 
elementary predicate [Q, AI, C~, tl], or the projector F~(tl) associated 
with it or their negation or complement C*, [Q, A~, Cl*, t l] ,  or F*(t~). 
Use a similar short-hand notation g2 and g3 for the similar elementary 
predicates at times later than t. Use similarly simplified notations d and h 
for the elementary predicates I-Q, A, an, t -  e] and [Q, A, a , ,  t] or their 
negations. Finally, denote simply by e~ the interval am, the predicate 
[M, N, Jn, t], or the projector En(t), and by e* the set J*, the predicate 
[M, N, J,*, t], or E*(t). The basis of the lattice B will then be taken to 
consist of sets having the form 

(f~ x dx  h x en x g2 x g3) or (erA1 x aa x aA x e* x CrAz x aa3) 
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With that choice, B is the smallest family of events that contains all the 
relevant predicates. As usual, the corresponding measures are traces of 
projector products. The corresponding representation of logic will be 
denoted in the following by L. 

9.4. Measurement and Logical Consistency 

Let us now see whether this representation of logic L is consistent 
There are two kinds of compatibility conditions. The first type involves 
only the projector E,(t) .  The subfamily of the other projectors being a 
Griffiths' family (type I), the consistency conditions where E~ enters will be 
given by Theorem 1 and they can be written as 

Re Tr{ g2(t2)h(t) E,( t )  d ( t -  ~) f l ( t l )  pf ' l( t l)  

x d'(t - e) E, ( t )  h'(t) g'2(t2) g3(t3)} = 0 (9.4) 

where f l ,  for instance, can be either F~ or F*, and so on. In the 
compatibility conditions only one element of the set (fl,  d, h, g2) differs 
from the corresponding element of the set (f],  d', h', g~) and they are 
complementary. 

The second type of compatibility condition bears only upon the 
apparatus reading and it reduces to one condition, namely 

Re Tr[E.(t) pE*( t ) ]  = 0 

which is trivially satisfied. 
Using Eq. (9.1), one can write the trace in Eq. (9.4) as 

Tr{ Uo(t3 - t2) g2 Uo( t2 - t) E ,  hSgo( t - ~ - t l ) f l 

X go(t1) P g o ' ( t l )  flS' t 

• Uo~(t - e -  tx) h 'E.  U o a ( t 2 -  t) g'2 U o ~ ( t 3 -  t2) g3} (9.5) 

One can simplify this expression by noticing first that U0(t') reduces to 
UQo(t')| ') for O < t ' < t - e ,  then that U o ~ ( t - e ) p M U o ~ ( t - e )  -1 is 
proportional to E~t(t - e); furthermore, the diagonal property (9.2) of S 
tells us that E ~ ( t ) h ( t ) S d ( t - e ) E o ( t - e )  is equal to zero, except when 
h = d =  lax)(a,I.  Therefore, the trace (9.5) becomes, after a little algebra, 

TrQl-g2Q(t2) e~(t) g'2Q(t2) g3e(t3)] 

x T r Q [ f f ( t j )  pe f ' ( t l )  e~( t - -  ~)] //V ~(~),~M~(n)*~ ~ Z.a ~ bc I" c d V  db ] 
\ b c d  / 

(9.6) 
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This remarkable factorization works for the consistency conditions and for 
the measures of predicates. It has several important consequences. 

9.5. Consistency Conditions 

The first consequence of (9.6) is its effect on consistency conditions. It 
will be convenient to introduce two different representations of logic Lbefore 

and Lafte r : 

Lbefore: initial state operator at time zero p, elementary predicates f l  at 
time tl and d at time t - e .  

Lafter: initial state operator lan)(an] at time t, predicates g2 and g3 at 
later times. 

Both are relative only to the quantum system Q. 
The consistency conditions for L require that the real part of (9.6) 

vanishes. Now it turns out that among the first two factors in Eq. (9.6), one 
of them is always a measure, say, e.g., for Lbefore , and therefore real; the 
other is a trace occurring in a consistency condition (in that case for Lafter). 
So a necessary and sufficient condition for L to be consistent is therefore 
that both Lbefore and Laft~r be consistent. 

So, one is led to conditions involving only on one hand what happens 
to Q prior to the measurement and up to the beginning of measurement 
and, on the other hand, what happens to Q after the measurement as if the 
initial tate operator were l a , ) ( a , I  at the time immediately following 
measurement. It is enough that each of these impler representations of logic 
be consistent with the above restrictions for the larger representation of 
logic to be also consistent. 

9.6. The Logical Implications Following a Measurement 

The factorization that has been found for the traces entering the com- 
patibility conditions holds as well for the probabilities. Assuming L to be 
consistent, one then gets as an immediate consequence of Eq. (9.2) the 
following simple but essential implications holding in L: 

[M,N,n, t3~[Q,A, {a.}, t - e l  
(9.7) 

[M, N, n, t] ~ [Q, A, {a.}, t] 

When the left-hand side of (9.7) describes an actual fact, the right- 
hand sides become reliable statements according to Definition 16. 

One can therefore consider in general the result of a measurement, 
when expressed as a predicate over the measured system, to be a reliable 
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statement. In the same way, the description of the initial state operator 
after preparation, as given by Rule 2, is also a reliable statement. 

These results can be summed up by the following. 

T h e o r e m  5. Consider the measurement of an observable A having 
a nondegenerate discrete spectrum by a measuring apparatus of type I .  (26) 

Assume that the state of the measuring apparatus after measurement 
belongs to a chain of potential facts. Then, in any consistent representation 
of logic containing the result of the measurement as a proposition, one 
must have: as a reliable statement, that the value of A before measurement 
is one well-defined eigenvalue am ; and any such consistent representation of 
logic making it possible to describe the measured system once it is again 
isolated after time t must use the initial state la, t)(a~t] at time t. 

This is of course wave packet reduction, which appears as a theorem 
in the framework provided by Rule 5. Its logical status has become quite 
definite and the apparatus did not even have to be described by classical 
logic. 

9.7. A Possible Experimental  Test 

In the case of Wigner's recombination experiment, as described in 
Section 7, this analysis predicts that the second Stern-Gerlach apparatus 
Sx, if followed by a counter detecting the particle, will give the same result 
as if the first Stern-Gerlach apparatus S~ had no.t been there. This is the 
only place where I could find a difference between the experimental predic- 
tions of the present theory and those of standard quantum mechanics. 
Unfortunately, standard quantum mechanics is not entirely predictive in 
this case, (24'7) as opposed to the present theory. 

9.8. General izat ions 

It is easy to generalize the above results along two directions. I shall 
not detail the proofs, which follow exactly the same lines. 

1. Assume that the measuring apparatus does not give a precise non- 
degenerate eigenvalue a m for A from N but just a set {an1 . . . . .  anp } of eigen- 
values that may be degenerate, Then one may consider the proposition 
[ M , N ,  nl, t] v .. .  v [ M , N ,  np, t ] = H .  One has 

H ~  [Q, A, {a,x ..... a,p}, t - e l  
(9.8) 

H ~  [Q, A, {a,l,..., a,p}, t] 

Furthermore, taking the case where pQ ---L0 ) (0 [ ,  introducing the sub- 
space P of ~ e  that is spanned by ]a,1 ) ..... la,p), the normed vector lOl(t)) 
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in P along which lies the projection of ]~9(t)), as well as the predicate r~ 
that is associated with the projector I~,1~,))(~,i(,~1, one finds that 
H=*,rc(t-e) and H ~ ( t ) ,  so that one recovers the well-known 
formulation of wave packet reduction in such a case. (13) The same result 
presumably holds when one is dealing with an interval in a continuous 
spectrum rather than with a set of discrete eigenvalues. 

2. The case of a measurement of typeII ,  where the state of Q is 
not the same before and after the measurement, is also straightforward. 
Replacing in Eq. (9.2) the state In, b', a n, t )  by In, b', t )  | I~n, t ) ,  where 
10n, t )  is the state of Q after measurement if initially it is in the state 
[a,,, t -  ~), one just uses pQ(t)= I~n, t)(On, t[ for the initial state operator 
after measurement. 

9.9. Not All Observables Are Measurable 

The status of observables that can be actually measured as dis- 
tinguished from an arbitrary self-adjoint operator becomes clearer: There is 
no reason to assume that the large family of self-adjoint operators in an 
infinite Hilbert space is made up of quantities that can in principle be 
measured. It appears that only a few dynamical variables can be actually 
measured by an actual apparatus. Nevertheless, many others can just as 
well enter propositions in consistent representations of logic, i.e., they have 
a logical meaning, even if not an experimental one. 

The reason for the specification of the state operator in Rule 2 may 
also become clearer by now. The preparation of a state results most 
frequently from some fact that is associated with a finite-rank projector. 
Not every state operator can be realized, for the same reason that not every 
observable can be measured. This restriction is due to the limited number 
of typically different measuring devices. 

9.10. The Probability Rule 

It should be noticed that I did not need to assume that some 
eigenvalue of the observable A had to be the result of an individual 
measurement. This is a necessary consequence of the theory. 

Finally, the measure of the proposition stating that the macroscopic 
observable N (needle position) has the value n is easily shown to be given 
directly by a trace involving only the measured system Q, namely 

TrUpQE~(t)] = (Ot E~(t)1~)= I ( 0  ]an)l  2 (9.9) 

if pQ = 10)(01. The independence of this result from the peculiarities of 
the measuring apparatus gives it an intrinsic meaning. 
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Using Rule 4, one can in principle describe a series of independent 
individual trials, so that it becomes at last possible to give a physical 
meaning to the mathematical measures as bona fide probabilities: 

Rule  6. The mathematical measure associated with a given result 
for a measurement is the probability of obtaining this result in a series of 
independent trials. 

10. IDENTICAL PARTICLES 

Nothing has been said about identical particles and how to deal with 
Pauli's exclusion principle in particular. This question should be worth a 
special investigation and it has not yet been considered in full detail. Its 
most difficult aspect is its apparently "holistic" character or, as stated by 
Margenau, (28'8) should we have to antisymmetrize with respect to all the 
electrons in the universe? Here, I just make two elementary remarks 
concerning, on one hand, two electrons in the same macroscopic cell of 
phase space and, on the other hand, measurement on a two-electron 
system, just to show that the main results are not invalidated. 

10.1. T w o  Electrons in a Macroscopic  Cell 

Let us consider the predicate stating that two electrons are in the same 
macroscopic cell of phase space C. We want to find the associated projec- 
tor. I shall only treat the case of one degree of freedom. A spin-l/2 state 
with Sz = ~ will be denoted by [c~) in a two-dimensional Hilbert space. 

It is possible to generalize Eq. (7.4) giving a projector in the following 
way: Define some kets for two electrons as given by 

G(oq,q',P,P')(x, x ' ,  o~, o~t) = g(q'P)(x) gtq"P')(x ')  lo~ ) @ [o~ ' ) (10.1) 

together with the antisymmetrized form 

G{Aq'q"P'P')(X, x ' ,  o~, ~')  

= 2-1/2[G(oq'q"P'P')(x, x ' ,  o~, o~ ' ) -  G(oq"q'P"P)(x' , x,  o{', o~)] (]0.2) 

Then one can define an antisymmetrized projector q~A(C x C) acting upon 
an antisymmetrized vector uA, replacing Eq. (7.4) by 

~AUA=(2n) 2fc• (10.3) 

the scalar product involving a summation over spin indices. The 
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generalization is in principle straightforward, whatever the number of 
electrons and the dimension of phase spac e . When considering two different 
cells C and C', it is enough to extend the integral (10.3) to the domain 
CxC'. 

10 .2 .  M e a s u r e m e n t  on O n e  E l e c t r o n  a m o n g  T w o  

Let us also go back to measurement theory. Assume, for instance, that 
we measure a one-electron observable on a two-electron system. The initial 
state operator will be taken to be p = 10)(till, with 

i@ ) = 2-1/2(1@1 ) @ 1~2) -- [~1 ) @ [@2)) (10.4) 

Let us also assume that the ket [~b) is such that it has a negligible interac- 
tion with the measuring apparatus (for instance, it describes a particle far 
away). Then a trivial reconsideration of the calculations made in Section 9 
shows that predicates later than measurement of the observable A at time t 
are described by representations of logic where the state operator at time t 
is given by p(t)= Iz)(Zl  with 

19)=2-1/2[la.l(t))|174 (10.5) 

11. C O N C L U S I O N  

New rules for quantum mechanics have been proposed. They avoid 
the most questionable assumptions of the conventional approach, such as 
postulating the possible physical character of every ket or the possibility of 
measuring every observable. It has been found that, despite the intrinsic 
probabilistic character of quantum mechanics, classical facts may exist in 
its framework so that one can consistently discuss individual measurements 
and give a consistent physical meaning to probabilities. 

Some rules of conventional quantum mechanics, such as the rule 
stating that only the eigenvalues of an observable can occur as a result of 
an individual measurement, or the rule of wave packet reduction, appear 
here as the results of a unique and general interpretative rule (Rule 5) 
having a strictly logical character. 

An important logical interdiction rule of conventional theory has been 
removed: one does not need to assert that, as far as measurement is concer- 
ned, a measuring apparatus must be thought of only in terms of classical 
physics. On the contrary, the logical aspects of classical physics appear as 
consequences of the quantum interpretative Rule 5. 

Quantum mechanics remains of course nonseparable. However, it may 
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be expected that quite a few unwanted epistemologieal or even broader 
philosophical consequences of the Copenhagen interpretation(7 '1~ 3,) or 
of the so-called "orthodox" version (1'32~ will not survive in the present 
approach or that they will be at least appreciably modified. 

A P P E N D I X .  C O N S I S T E N C Y  C O N D I T I O N S  

I first write explicitly all the consistency conditions for a Griffiths 
family. I shall take the example of four observables Aj (j  = 1 ..... 4), which is 
enough to exhibit all the properties of the general case. The spectrum o-j of 
Aj is divided into several subsets Cf which will be called here elementary 
segments. The set of values for the indices r, s, q, and u will be denoted by 
R0, So, Qo, and U0, respectively, when j =  1, 2, 3, 4. With the set C~ is 
associated a projector ,E~(tj), which will be written here simply as E~, time 
remaining implicit. Note the property 

r r' E~E~ = 6,,,E~ (A.1) 

A direct product of n (n = 4  here) elementary segments will be called 
an elementary block. A segment C~ is the union (sum) of several elemen- 
tary segments C~, r e R, R c Ro. It is associated with the projector 

U = Z E~ (A.2) 
r e R  

The direct product of n segments will be called a block. Consider such a 
block D o = Cf  x C2 s x C3 e x C~. A special form of condition C occurs when 
Cf  is decomposed into elementary segments. It reads 

Q S R R S Q U Tr(E3 E2Et PE1 EzE1 E4 ) 

E Q S r r S Q U Tr(E 3 E2E ~ pE~ E2E ~ E 4 ) (A.3) 
r ~ R  

Using Eq. (A.2) for El ,  developing the sum in the right-hand side of 
Eq. (A.3), and using Eq. (A.1), one gets 

Tr[Ee3ES(Er~pEr~')ESEfE~']=O; r#r ' ,  reR,  r '~R (A.4) 

Here I have used the definition of a double commutator given in Section 2. 
If these conditions are satisfied, the additivity of projectors [Eq. (A.2)] 
shows that Condition C of Section 2 is satisfied for any decomposition of 
C R into a sum of smaller segments, the segments C s, C3 e, C4 v remaining the 1. 

same, 
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Let us now consider Condition C for the decomposition of C s into its 
constituting elementary segments C~, s e S. Here one must not only satisfy 
the corresponding unicity condition 

Q S R  R S Q  U Tr(E3 E2E1PE1 E2E1 E4 ) 

= Z Tr(EQE~E~pEfE~EQE~ ') (A.5) 
s ~ S  

but also the consistency conditions (A.4) already established. Since this 
analysis must hold for any block Do, taking R = {r} in Eq. (A.5) gives as 
before 

Tr[EQ(ES2E~pE~ES2')EQE~]=O; sCs', s~S, s 'cS,  r~R o (A.6) 

Using Eq. (A.4) in the special case where S is a pair (s, s'), s'r 
developing E s according to Eq. (A.2) and taking Eq. (A.6) into account, 
one finds that one must have 

Q s r r '  Yr{E 3 [E2(EIpE ~ )E~'] EQEV~3 4 J  = O 

s,/:s', r:/:r', s~So, s' ~So, r~Ro, r' ~R o (A.7) 

Conversely, the conditions (A.4) and (A.7) entail that any decomposition 
of Cf  x C s into a sum of smaller blocks will satisfy Condition C. 

The process is clearly the same when one considers decompositions of 
E3Q. On the other hand, a decomposition of E~ will give no new condition 
because the unicity of measure and the validity of the summed consistency 
conditions will be trivial, exactly as in the simple example given in 
Section 2. 

Finally, the complete set of consistency conditions is given by 

q s r r '  s q u ~ _  Tr{E3E2[E, pE 1 ] EzE3E4} 0 
q S r r Tr{E3[E2E1pE1E~' ] EqE~} 0 

q s r r .~_ Tr{[E3EzEIpE1E~E~' ] E~} 0 

Tr{Eg[E~ [E~pE~'] ES2 '] EqEg} = 0 (A.8) 

Tr{ [Eg[E~E~pEr~E'2 '] Eg'] Eg} = 0 

Tr{ [EgES2[E~pE~ '] E~2E q'] Eg} = 0 

Tr({ Eg[E~ [E~ pE~'] E~2 "] E~'} Eg) = 0 

the indices ranging over all Ro, So, Qo, Uo, any pair of indices such as r 
and r' satisfying r r r'. By construction, these consistency conditions are 
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necessary and sufficient for the measure to be uniquely defined and to 
satisfy the axioms of probability calculus. 

The form initially given by Griffiths for these conditions was 

Q S r r' S Q U rr ReTr(E3E2ElpEIEzE3E4)=O,  r r  (A.9) 

where S, Q, and U are any subsets of So, Q0, and Uo, to gether with the 
analogous conditions one obtains by a permutation, the pair of elementary 
indices occurring in R, S, or U. This is equivalent to 

Tr{EQES[ErlpErl '] ESEQ3E%} = O, r r r' (A.IO) 

as noticed by Griffiths (private communication). Clearly, there are many 
fewer conditions in (A.8) than in (A.9) and its analogs. 

It is much more difficult to discuss the consistency conditions for a 
general family of propositions not belonging to Griffiths' type (type II). It 
involves rather tedious considerations in graph theory which would be out 
of place here. Fortunately, there is apparently in practice only one such 
kind of family that has useful applications, which I shall call a special 
family and define once again in the case of four observables. Assume that 
one wants to discuss the elementary predicate associated with a set 
D I = C l x C 2 x C 3 x C 4  in X = a ~ x a 2 x a 3 x a 4 .  One can define a con- 
venient basis {D j, D 2, D 3 ,  D 4 ,  D5} on )( as given by 

D2 = C* x C2 x C3 x C 4 ,  D 3 ~--- (9" 1 X C ~  x C 3 x C 4 
(A.11) 

D 4 = 0" 1 X 0" 2 X C3" X C4, D5 = crl x a2 x a 3 x C* 

The history predicates that can be written as a disjunction (union) of 
elementary predicates are then seen to be given by the sets D 1 w Dz, 
D 1 w D2wD3,  and so on. The corresponding consistency conditions are 
then written explicitly as above to become simply 

Tr{E3E2[ElpE * ] E2E3E4} = 0 

Tr{E3[EzpE*] E3E4} = 0 (A.12) 

Tr{ [E3pE ~ ] E 4 }  = 0 

One should notice how economical this choice is, since one has only n -  1 
consistency conditions for n observables. 
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